
Chapter 11

Iterated Dominance and
Nash Equilibrium

In the previous chapter we examined simultaneous move games in which each
player had a dominant strategy; the Prisoner’s Dilemma game was one example.
In many games, however, one or more players do not have dominant strategies.
This chapter explores two solution concepts that we can use to analyze such
games.

The first solution concept, iterated dominance, is a refinement of the domi-
nant strategies approach from the previous chapter, meaning that iterated dom-
inance is a stronger technique that builds upon (or refines) the results of the
dominant strategies approach. In other words: the idea of dominant strategies
often allows us to narrow down our prediction for the outcome of a game; it-
erated dominance allows us to narrow down our prediction at least as far, and
sometimes further.

Unfortunately, this extra strength does not come for free. While dominant
strategies is a reasonably simple idea, iterated dominance is (while not exactly
a Nobel-prize-winning concept) one step closer to rocket science. As such, it
requires more powerful assumptions about the intellectual capabilities of the
optimizing individuals who are playing the games.

The second solution concept in this chapter, Nash equilibrium, is a refine-
ment of iterated dominance: Nash equilibrium allows us to narrow down our
prediction at least as far as iterated dominance, and sometimes further. Again,
this extra strength does not come for free. Nonetheless, Nash equilibrium is one
of the central concepts in the study of strategic behavior—a fact which helps
explain why Nash equilibrium is a Nobel-prize-winning concept.

11.1 Iterated Dominance

The transition from dominant strategies to iterated dominance involves two
ideas. The first is this: even when a player doesn’t have a dominant strategy
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102 CHAPTER 11. ITERATED DOMINANCE AND NASH EQUILIBRIUM

(i.e., a best strategy, regardless of what the other players do), that player might
still have one strategy that dominates another (i.e., a strategy A that is better
than strategy B, regardless of what the other players do). As suggested by the
terms “best” and “better”, the difference here is between a superlative statement
(e.g., “Jane is the best athlete in the class”) and a comparative statement (“Jane
is a better athlete than Ted”); because comparatives are weaker statements, we
can use them in situations where we might not be able to use superlatives.

For example, consider the game in Figure 11.1. First note that there are no
strictly dominant strategies in this game: U is not the best strategy for Player
1 if Player 2 plays L or C, M is not the best strategy for Player 1 if Player 2
plays R, and D is not the best strategy for Player 1 if Player 2 plays L or C.
Similarly, L is not the best strategy for Player 2 if Player 1 plays U or D, C is
not the best strategy for Player 2 if Player 1 plays M, and R is not the best
strategy for Player 2 if Player 1 plays U, M, or D.

Although there are no strictly dominant strategies, we can see that no matter
what Player 1 does, Player 2 always gets a higher payoff from playing L than
from playing R. We can therefore say that L strictly dominates R for Player
2, or that R is strictly dominated by L for Player 2. (Note that we cannot
say that L is a strictly dominant strategy for Player 2—it does not dominate
C—but we can say that R is a strictly dominated strategy for Player 2: an
optimizing Player 2 would never play R.)

The second idea in the transition from dominant strategies to iterated dom-
inance is similar to the backward induction idea of anticipating your opponents’
moves: players should recognize that other players have strictly dominated
strategies, and should act accordingly. In our example, Player 1 should rec-
ognize that R is a strictly dominated strategy for Player 2, and therefore that
there is no chance that Player 2 will play R. In effect, the game now looks like
that shown in Figure 11.2 on the next page: the lines through the payoffs in the
R column indicate that both players know that these payoffs have no chance of
occurring because R is not a viable strategy for Player 2.

But now we see that Player 1 has an obvious strategy: given that Player 2 is
never going to play R, Player 1 should always play M. Once R is out of the way,
U and D are both dominated by M for Player 1: regardless of whether Player 2
plays L or C, Player 1 always gets his highest payoff by playing M. This is the

Player 2

L C R

Player 1

U 1, 10 3, 20 40, 0

M 10, 20 50, -10 6, 0

D 2, 20 4, 40 10, 0

Figure 11.1: A game without dominant strategies
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Player 2

L C R

Player 1

U 1, 10 3, 20 ////40,///0

M 10, 20 50, -10 //6,///0

D 2, 20 4, 40 ////10,///0

Figure 11.2: Eliminating R, which is strictly dominated by L for Player 2

idea of iteration, i.e., repetition. Combining this with the idea of dominated
strategies gives us the process of iterated dominance: starting with the game
in Figure 11.1, we look for a strictly dominated strategy; having found one (R),
we eliminate it, giving us the game in Figure 11.2. We then repeat the process,
looking for a strictly dominated strategy in that game; having found one (or,
actually two: U and D), we eliminate them. A final iteration would yield (M, L)
as a prediction for this game: knowing that Player 1 will always play M, Player
2 should always play L.

A complete example

Consider the game in Figure 11.3 below. There are no strictly dominant strate-
gies, but there is a strictly dominated strategy: playing U is strictly dominated
by D for Player 1. We can conclude that Player 1 will never play U, and so our
game reduces to the matrix in Figure 11.4a on the next page.

But Player 2 should know that Player 1 will never play U, and if Player 1
never plays U then some of Player 2’s strategies are strictly dominated! Namely,
playing L and playing R are both strictly dominated by playing C as long as
Player 1 never plays U. So we can eliminate those strategies for Player 2, yielding
the matrix in Figure 11.4b. Finally, Player 1 should anticipate that Player 2
(anticipating that Player 1 will never play U) will never play L or R, and so
Player 1 should conclude that M is strictly dominated by D (the matrix in
Figure 11.4c). Using iterated strict dominance, then, we can predict that Player
1 will choose D and Player 2 will choose C.

Player 2

L C R

Player 1

U 1,1 2,0 2,2

M 0,3 1,5 4,4

D 2,4 3,6 3,0

Figure 11.3: Iterated strict dominance example
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L C R

U ////1,1 ////2,0 ////2,2

M 0,3 1,5 4,4

D 2,4 3,6 3,0

(a)

L C R

U ////1,1 ////2,0 ////2,2

M ////0,3 1,5 ////4,4

D ////2,4 3,6 ////3,0

(b)

L C R

U ////1,1 ////2,0 ////2,2

M ////0,3 ////1,5 ////4,4

D ////2,4 3,6 ////3,0

(c)

Figure 11.4: Solution to iterated strict dominance example

Question: Does the order of elimination matter?

Answer: Although it is not obvious, the end result of iterated strict dominance
is always the same regardless of the sequence of eliminations. In other words,
if in some game you can either eliminate U for Player 1 or L for Player 2, you
don’t need to worry about which one to “do first”: either way you’ll end up at
the same answer.

A side note here is that this result only holds under iterated strict domi-
nance, according to which we eliminate a strategy only if there is some other
strategy that yields payoffs that are strictly higher no matter what the other
players do. If you eliminate a strategy when there is some other strategy that
yields payoffs that are higher or equal no matter what the other players do, you
are doing iterated weak dominance, and in this case you will not always get
the same answer regardless of the sequence of eliminations. (For an example
see problem 10.) This is a serious problem, and helps explain why we focus on
iterated strict dominance.

11.2 Nash Equilibrium

Tenuous as it may seem, iterated strict dominance is not a very strong solution
concept, meaning that it does not yield predictions in many games. An example
is the game in Figure 11.5: there are no strictly dominant strategies and no
strictly dominated strategies.

So game theorists have come up with other solution concepts. The most
important one is called Nash equilibrium (abbreviated NE). A Nash equi-

Player 2

L C R

Player 1

U 5,1 2,0 2,2

M 0,4 1,5 4,5

D 2,4 3,6 1,0

Figure 11.5: Nash equilibrium example
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librium occurs when the strategies of the various players are best responses to
each other. Equivalently but in other words: given the strategies of the other
players, each player is acting optimally. Equivalently again: No player can gain
by deviating alone, i.e., by changing his or her strategy single-handedly.

In the game in Figure 11.5, the strategies (D, C) form a Nash equilibrium:
if Player 1 plays D, Player 2 gets her best payoff by playing C; and if Player 2
plays C, Player 1 gets his best payoff by playing D. So the players’ strategies
are best responses to each other; equivalently, no player can gain by deviating
alone. (Question: Are there any other Nash equilibria in this game?)

Algorithms for Finding Nash Equilibria

The best way to identify the Nash equilibria of a game is to first identify all
of the outcomes that are not Nash equilibria; anything left must be a Nash
equilibrium. For example, consider the game in Figure 11.5. The strategy pair
(U, L) is not a Nash equilibrium because Player 2 can gain by deviating alone
to R; (U, C) is not a NE because Player 1 can gain by deviating alone to D
(and Player 2 can gain by deviating alone to L or R); etc. If you go through
the options one by one and cross out those that are not Nash equilibria, the
remaining options will be Nash equilibria (See Figure 11.6a).

A shortcut (but one you should use carefully!) is to underline each player’s
best responses.1 To apply this to the game in Figure 11.5, first assume that
Player 2 plays L; Player 1’s best response is to play U, so underline the “5” in
the box corresponding to (U, L). Next assume that Player 2 plays C; Player 1’s
best response is to play D, so underline the “3” in the box corresponding to (D,
C). Finally, assume that Player 2 plays R; Player 1’s best response is to play
M, so underline the “4” in the box corresponding to (M, R). Now do the same
thing for Player 2: go through all of Player 1’s options and underline the best
response for Player 2. (Note that C and R are both best responses when Player
1 plays M!) We end up with Figure 11.6b: the only boxes with both payoffs
underlined are (D, C) and (M, R), the Nash equilibria of the game.

L C R

U ////5,1 ////2,0 ////2,2

M ////0,4 ////1,5 4,5

D ////2,4 3,6 ////1,0

(a)

L C R

U 5,1 2,0 2,2

M 0,4 1,5 4,5

D 2,4 3,6 1,0

(b)

Figure 11.6: Finding Nash equilibria: (a) with strike-outs; (b) with underlinings

1It is easy to confuse the rows and columns and end up underlining the wrong things.
Always double-check your answers by confirming that no player can gain by deviating alone.
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Some History

Nash equilibrium is one of the fundamental concepts of game theory. It is named
after John Nash, a mathematician born in the early part of this century. He
came up with his equilibrium concept while getting his Ph.D. in mathematics
at Princeton, then got a professorship at MIT, then went mad (e.g., claimed
that aliens were sending him coded messages on the front page of the New York
Times), then spent many years in and out of various mental institutions, then
slowly got on the road to recovery, then won the Nobel Prize in Economics in
1994, and now putters around Princeton playing with computers. You can read
more about him in a fun book called A Beautiful Mind by Sylvia Nasar.2

11.3 Infinitely Repeated Games

We saw in the last chapter that there’s no potential for cooperation (at least in
theory) if we play the Prisoner’s Dilemma game twice, or 50 times, or 50 million
times. What about infinitely many times?

In order to examine this possibility, we must first figure out exactly what it
means to win (or lose) this game infinitely many times. Here it helps to use the
present value concepts from Chapter 1: with an interest rate of 5%, winning $1
in each round does not give you infinite winnings. Rather, the present value of
your winnings (using the perpetuity formula, assuming you get paid at the end

of each round) is
$1

.05
= $20.

So: with an interest rate of r we can ask meaningful questions about the
potential for cooperation. One point that is immediately clear is that there is
still plenty of potential for non-cooperation: the strategies of playing (D, D)
forever continue to constitute a Nash equilibrium of this game.

But perhaps there are other strategies that are also Nash equilibria. Because
the game is played infinitely many times, we cannot use backward induction to
solve this game. Instead, we need to hunt around and look for strategies that
might yield a cooperative Nash equilibrium.

One potentially attractive idea is to use a trigger strategy: begin by co-
operating and assuming that the other player will cooperate (i.e., that both
players will play C), and enforce cooperation by threatening to return to the
(D, D) equilibrium. Formally, the trigger strategy for each player is as follows:
In the first stage, play C. Thereafter, if (C, C) has been the result in all previous
stages, play C; otherwise, play D.

We can see that the cooperative outcome (C, C) will be the outcome in each
stage game if both players adopt such a trigger strategy. But do these strategies
constitute a Nash equilibrium? To check this, we have to see if the strategies
are best responses to each other. In other words, given that Player 1 adopts

2There is also a movie of the same name, starring Russell Crowe. Unfortunately, it takes
some liberties with the truth; it also does a lousy job of describing the Nash equilibrium
concept.
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the trigger strategy above, is it optimal for Player 2 to adopt a similar trigger
strategy, or does Player 2 have an incentive to take advantage of Player 1?

To find out, let’s examine Player 2’s payoffs from cooperating and from
deviating:

If Player 2 cooperates, she can expect to gain $1 at the end of each round,

yielding a present value payoff of
$1

r
. (If r = .05 this turns out to be $20.)

If Player 2 tries to cheat Player 1 (e.g., by playing D in the first round),
Player 2 can anticipate that Player 1 will play D thereafter, so the best
response for Player 2 is to play D thereafter as well. So the best deviation
strategy for Player 2 is to play D in the first round (yielding a payoff of
$10 since Player 1 plays C) and D thereafter (yielding a payoff of $0 each
round since Player 1 plays D also). The present value of all this is simply
$10.

We can now compare these two payoffs, and we can see that cooperating is a

best response for Player 2 as long as
$1

r
≥ 10. Since the game is symmetric,

cooperating is a best response for Player 1 under same condition, so we have a

Nash equilibrium (i.e., mutual best responses) as long as
$1

r
≥ 10. Solving this

yields a critical value of r = .1. When r is below this value (i.e., the interest
rate is less than 10%), cooperation is possible. When r is above this value (i.e.,
the interest rate is greater than 10%), cheating is too tempting and the trigger
strategies do not form a Nash equilibrium. The intuition here is quite nice: By
cooperating instead of deviating, Player 2 accepts lower payoffs now (1 instead
of 10) in order to benefit from higher payoffs later (1 instead of 0). Higher
interest rates make the future less important, meaning that Player 2 benefits
less by incurring losses today in exchange for gains tomorrow. With sufficiently
high interest rates, Player 2 will take the money and run; but so will Player 1!

11.4 Mixed Strategies

Figure 11.7 shows another game, called the Battle of the Sexes. In this
game, Player 1 prefers the opera, and Player 2 prefers wrestling, but what

Player 2

Opera WWF

Player 1
Opera 2,1 0,0

WWF 0,0 1,2

Figure 11.7: The battle of the sexes
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both players really want above all is to be with each other. They both choose
simultaneously, though, and so cannot guarantee that they’ll end up together.
(Imagine, for example, that they are at different work places and can’t reach
each other and must simply head to one of the two events after work and wait
for the other person at will-call.)

The Nash equilibriums of this game are (Opera, Opera) and (WWF, WWF).
But there is another Nash equilibrium that is perhaps a little better at predicting
reality: that equilibrium is for both players to play a mixed strategy, i.e., to
choose different strategies with various probabilities. (In this case, the mixed
strategy equilibrium is for Player 1 to choose opera with probability 2/3 and
WWF with probability 1/3, and for Player 2 to choose opera with probability
1/3 and WWF with probability 2/3. You should be able to use what you’ve
learned about expected value to show that these are mutual best responses.)
One of the main results from game theory is that every finite game has at
least one Nash equilibrium. That Nash equilibrium may only exist in mixed
strategies, as in the following example.

Example: (Matching pennies, Figure 11.8). Players 1 and 2 each have a
penny, and they put their pennies on a table simultaneously. If both show the
same face (both heads or both tails), Player 2 must pay $1 to Player 1; if one
is heads and the other is tails, Player 1 must pay $1 to Player 2.

Not surprisingly, the only NE in this game is for each player to play heads
with probably 1/2 and tails with probability 1/2.

11.5 Math: Mixed Strategies

Consider the “Matching Pennies” game shown in Figure 11.8. There are no pure
strategy Nash equilibria in this game, but intuitively it seems like randomizing
between heads and tails (with probability 50% for each) might be a good strat-
egy. To formalize this intuition we introduce the concept of mixed strategy
Nash equilibrium.

In a mixed strategy Nash equilibrium, players do not have to choose just
one strategy (say, Heads) and play it with probability 1. Instead, they can
specify probabilities for all of their different options and then randomize (or
mix) between them. To see how this might work in practice, a player who
specifies Heads with probability .3 and Tails with probability .7 could put 3

Player 2

Heads Tails

Player 1
Heads 1,-1 -1,1

Tails -1,1 1,-1

Figure 11.8: Matching pennies
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cards labeled Heads and 7 cards labeled Tails into a hat; when the times comes
to actually play the game, she draws a card from the hat and plays accordingly.
She may only play the game once, but her odds of playing Heads or Tails are .3
and .7, respectively.

Finding Mixed Strategy Nash Equilibria

To find mixed strategy Nash equilibria, we can simply associate different proba-
bilities with the different options for each player. This gets messy for big payoff
matrices, so we will restrict out attention to games (such as Matching Pennies)
in which each player has only two options. In that game, let us define p to be
the probability that player 1 chooses Heads and q to be the probability that
player 2 chooses Heads. Since probabilities have to add up to 1, the probability
that players 1 and 2 choose Tails must be 1 − p and 1 − q, respectively.

Now let’s write down the expected payoff for player 1 given these strategies.
With probability p player 1 chooses Heads, in which case he gets +1 if player
2 chooses Heads (which happens with probability q) and −1 if player 2 chooses
Tails (which happens with probability 1 − q). With probability 1 − p player
1 chooses Tails, in which case he gets −1 if player 2 chooses Heads (which
happens with probability q) and +1 if player 2 chooses Tails (which happens
with probability 1 − q). So player 1’s expected value is

E(π1) = p[q(1) + (1 − q)(−1)] + (1 − p)[q(−1) + (1 − q)(1)]

= p(2q − 1) + (1 − p)(1 − 2q).

Similarly, player 2’s expected payoff is

E(π2) = q[p(−1) + (1 − p)(1)] + (1 − q)[p(1) + (1 − p)(−1)]

= q(1 − 2p) + (1 − q)(2p − 1).

Now, we want to find p and q that form a Nash equilibrium, i.e., that are
mutual best responses. To do this, we take partial derivatives and set them
equal to zero. Here’s why:

First, player 1 wants to choose p to maximize E(π1) = p(2q − 1) + (1 −
p)(1 − 2q). One possibility is that a maximizing value of p is a corner solution,
i.e., p = 0 or p = 1. These are player 1’s pure strategy options: p = 1 means
that player 1 always plays Heads, and p = 0 means that player 1 always plays
Tails.

The other possibility is that there is an interior maximum, i.e., a maximum
value of p with 0 < p < 1. In this case, the partial derivative of E(π1) with
respect to p must be zero:

∂E(π1)

∂p
= 0 =⇒ 2q − 1 − (1 − 2q) = 0 =⇒ 4q = 2 =⇒ q =

1

2
.

This tells us that any interior value of p is a candidate maximum as long as
q = 1

2 . Mathematically, this makes sense because if q = 1
2 then player 1’s
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expected payoff (no matter what his choice of p) is always

E(π1) = p(2q − 1) + (1 − p)(1 − 2q) = p(0) + (1 − p)(0) = 0.

Intuitively, what is happening is that player 2 is randomly choosing between
Heads and Tails. As player 1, any strategy you follow is a best response. If
you always play Heads, you will get an expected payoff of 0; if you always play
Tails, you will get an expected payoff of 0; if you play heads with probability .5
or .3, you will get an expected payoff of 0.

Our conclusion regarding player 1’s strategy, then, is this: If player 2 chooses
q = 1

2 , i.e., randomizes between Heads and Tails, then any choice of p is a best
response for player 1. But if player 2 chooses q 6= 1

2 , then player 1’s best
response is a pure strategy: if player 2 chooses q > 1

2 then player 1’s best
response is to always play Heads; if player 2 chooses q < 1

2 then player 1’s best
response is to always play Tails.

We can now do the math for player 2 and come up with a similar conclusion.
Player 2’s expected payoff is E(π2) = q(1 − 2p) + (1 − q)(2p − 1). Any value of
q that maximizes this is either a corner solution (i.e., one of the pure strategies
q = 1 or q = 0) or an interior solution with 0 < q < 1, in which case

∂E(π2)

∂q
= 0 =⇒ 1 − 2p − (2p − 1) = 0 =⇒ 4p = 2 =⇒ p =

1

2
.

So if player 1 chooses p = 1
2 then any choice of q is a best response for player 2.

But if player 1 chooses p 6= 1
2 , then player 2’s best response is a pure strategy:

if player 1 chooses p > 1
2 then player 2’s best response is to always play Tails;

if player 1 chooses p < 1
2 then player 2’s best response is to always play Heads.

Now we can put our results together to find the Nash equilibrium in this
game. If player 1’s choice of p is a best response to player 2’s choice of q then
either p = 1 or p = 0 or q = 1

2 (in which case any p is a best response). And
if player 2’s choice of q is a best response to player 1’s choice of p then either
q = 1 or q = 0 or p = 1

2 (in which case any q is a best response).
Three choices for player 1 and three choices for player 2 combine to give us

nine candidate Nash equilibria:

Four pure strategy candidates: (p = 1, q = 1), (p = 1, q = 0), (p = 0, q =
1), (p = 0, q = 0).

One mixed strategy candidate: (0 < p < 1, 0 < q < 1).

Four pure/mixed combinations: (p = 1, 0 < q < 1), (p = 0, 0 < q <

1), (0 < p < 1, q = 1), (0 < p < 1, q = 0).

We can see from the payoff matrix that the four pure strategy candidates are
not mutual best responses, i.e., are not Nash equilibria. And we can quickly see
that the four pure/mixed combinations are also not best responses; for example,
(p = 1, 0 < q < 1) is not a Nash equilibrium because if player 1 chooses p = 1
then player 2’s best response is to choose q = 0, not 0 < q < 1.
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But the mixed strategy candidate does yield a Nash equilibrium: player 1’s
choice of 0 < p < 1 is a best response as long as q = 1

2 . And player 2’s choice
of 0 < q < 1 is a best response as long as p = 1

2 . So the players’ strategies are
mutual best responses if p = q = 1

2 . This is the mixed strategy Nash equilibrium
of this game.

Another Example

Consider the “Battle of the Sexes” game shown in Figure 11.7 and duplicated
below. Again, let p be the probability that player 1 chooses Opera and q be
the probability that player 2 chooses Opera (so that 1 − p and 1 − q are the
respective probabilities that players 1 and 2 will choose WWF). Then player 1’s
expected payoff is

E(π1) = p[q(2) + (1 − q)(0)] + (1 − p)[q(0) + (1 − q)(1)]

= 2pq + (1 − p)(1 − q).

Similarly, player 2’s expected payoff is

E(π2) = q[p(1) + (1 − p)(0)] + (1 − q)[p(0) + (1 − p)(2)]

= pq + (1 − q)(2)(1 − p).

Now, we want to find p and q that form a Nash equilibrium, i.e., that are mutual
best responses. To do this, we take partial derivatives and set them equal to
zero.

So: player 1 wants to choose p to maximize E(π1) = 2pq + (1 − p)(1 − q).
Any value of p that maximizes this is either a corner solution (i.e., one of the
pure strategies p = 1 or p = 0) or an interior solution with 0 < p < 1, in which
case the partial derivative of E(π1) with respect to p must be zero:

∂E(π1)

∂p
= 0 =⇒ 2q − (1 − q) = 0 =⇒ 3q = 1 =⇒ q =

1

3
.

This tells us that any interior value of p is a candidate maximum as long as
q = 1

3 . Mathematically, this makes sense because if q = 1
3 then player 1’s

expected payoff (no matter what his choice of p) is always

E(π1) = 2pq + (1 − p)(1 − q) =
2

3
p +

2

3
(1 − p) =

2

3
.

Player 2

Opera WWF

Player 1
Opera 2,1 0,0

WWF 0,0 1,2

Figure 11.9: The battle of the sexes



112 CHAPTER 11. ITERATED DOMINANCE AND NASH EQUILIBRIUM

Our conclusion regarding player 1’s strategy, then, is this: If player 2 chooses
q = 1

3 , then any choice of p is a best response for player 1. But if player 2
chooses q 6= 1

3 , then player 1’s best response is a pure strategy: if player 2
chooses q > 1

3 then player 1’s best response is to always play Opera; if player 2
chooses q < 1

3 then player 1’s best response is to always play WWF.
We can now do the math for player 2 and come up with a similar conclusion.

Player 2’s expected payoff is E(π2) = pq +(1− q)(2)(1− p). Any value of q that
maximizes this is either a corner solution (i.e., one of the pure strategies q = 1
or q = 0) or an interior solution with 0 < q < 1, in which case

∂E(π2)

∂q
= 0 =⇒ p − 2(1 − p) = 0 =⇒ 3p = 2 =⇒ p =

2

3
.

So if player 1 chooses p = 2
3 then any choice of q is a best response for player 2.

But if player 1 chooses p 6= 2
3 , then player 2’s best response is a pure strategy:

if player 1 chooses p > 2
3 then player 2’s best response is to always play Opera;

if player 1 chooses p < 2
3 then player 2’s best response is to always play WWF.

Now we can put our results together to find the Nash equilibrium in this
game. If player 1’s choice of p is a best response to player 2’s choice of q then
either p = 1 or p = 0 or q = 1

3 (in which case any p is a best response). And
if player 2’s choice of q is a best response to player 1’s choice of p then either
q = 1 or q = 0 or p = 2

3 (in which case any q is a best response).
Three choices for player 1 and three choices for player 2 combine to give us

nine candidate Nash equilibria:

Four pure strategy candidates: (p = 1, q = 1), (p = 1, q = 0), (p = 0, q =
1), (p = 0, q = 0).

One mixed strategy candidate: (0 < p < 1, 0 < q < 1).

Four pure/mixed combinations: (p = 1, 0 < q < 1), (p = 0, 0 < q <

1), (0 < p < 1, q = 1), (0 < p < 1, q = 0).

We can see from the payoff matrix that there are two Nash equilibria among
the four pure strategy candidates: (p = 1, q = 1) and (p = 0, q = 0). The
other two are not Nash equilibria. We can also see that the four pure/mixed
combinations are not best responses; for example, (p = 1, 0 < q < 1) is not a
Nash equilibrium because if player 1 chooses p = 1 then player 2’s best response
is to choose q = 1, not 0 < q < 1.

But the mixed strategy candidate does yield a Nash equilibrium: player 1’s
choice of 0 < p < 1 is a best response as long as q = 1

3 . And player 2’s choice
of 0 < q < 1 is a best response as long as p = 2

3 . So the players’ strategies are
mutual best responses if p = 2

3 and q = 1
3 . This is the mixed strategy Nash

equilibrium of this game.
So this game has three Nash equilibria: two in pure strategies and one in

mixed strategies.
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Problems

1. Challenge Explain (as if to a non-economist) why iterated dominance make
sense.

2. Super Challenge Explain (as if to a non-economist) why Nash equilibrium
makes sense.

3. Show that there are no strictly dominant strategies in the game in Fig-
ure 11.3 on page 103.

4. Fair Game Analyze games (a) through (e) on the following page(s). First
see how far you can get using iterated dominance. Then find the Nash
equilibrium(s). If you can identify a unique outcome, determine whether
it is Pareto efficient. If it is not, identify a Pareto improvement.

5. Fair Game The game “Rock, Paper, Scissors” works as follows: You and
your opponent simultaneously choose rock, paper, or scissors. If you pick
the same one (e.g., if you both pick rock), you both get zero. Otherwise,
rock beats scissors, scissors beats paper, and paper beats rock, and the
loser must pay the winner $1.

(a) Write down the payoff matrix for this game.

(b) Does iterated dominance help you solve this game?

(c) Calculus/Challenge Can you find any mixed strategy Nash equilibria?

6. Challenge Prove that the pure strategy Nash equilibrium solutions are a
subset of the iterated dominance solutions, i.e., that iterated dominance
never eliminates any pure strategy Nash equilibrium solutions.

7. Rewrite Story #1 from Overinvestment Game (from problem 3 in Chap-
ter 8) as a simultaneous move game and identify the (pure strategy) Nash
equilibria. Does your answer suggest anything about the relationship be-
tween backward induction and Nash equilibrium?

8. Challenge Prove that backward induction solutions are a subset of Nash
equilibrium solutions, i.e., that any backward induction solution is also a
Nash equilibrium solution. (Note: Backward induction is in fact a refine-
ment of Nash equilibrium called “subgame perfect Nash equilibrium”.)

9. Fun/Challenge Section 11.3 describes a trigger strategy for yielding co-
operating in the infinitely repeated Prisoner’s Dilemma game shown in
figure 10.3. Can you think of another strategy that yields even higher
playoffs for the players? Can you show that it’s a Nash equilibrium?

10. Challenge The end of the section on iterated dominance mentioned the
dangers of iterated weak dominance, namely that different sequences of
elimination can yield different predictions for the outcome of a game. Show
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(a)

Player 2

L C R

Player 1

U 0,3 2,1 5,0

M 4,8 3,2 8,3

D 3,7 6,3 6,8

(b)

Player 2

L C R

Player 1

U -1,4 7,3 5,2

M 2,0 5,-1 6,2

D 1,2 1,0 1,0

(c)

Player 2

L C R

Player 1

U 1,0 7,3 2,1

M 1,0 1,2 6,2

D 1,2 1,-3 1,0

(d)

Player 2

L C R

Player 1

U 3,-1 5,4 3,2

M -2,5 1,3 2,1

D 3,3 3,6 3,0

(e)

Player 2

L C R

Player 1

U 3,-1 1,0 -1,-1

M 1,-5 6,3 -7,-5

D -8,-10 -1,-3 -1,-1
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Player 2

L R

Player 1

U 50, 10 6, 20

M 50, 10 8, 9

D 60, 15 8, 15

Figure 11.10: The dangers of iterated weak dominance

this using the game in Figure 11.10. (Hint: Note that U is weakly domi-
nated by M for Player 1 and that M is weakly dominated by D for Player
1.)

Calculus Problems

C-1. Find all Nash equilibria (pure and mixed) in the game shown in fig-
ure 11.11. (Use p as the probability that Player 1 plays U and q as the
probability that Player 2 plays L.)

Player 2

L R

Player 1
U 1, 3 0, 0

D 0, 0 3, 1

Figure 11.11: A game with a mixed strategy equilibrium

C-2. Find all Nash equilibria (pure and mixed) in the game shown in fig-
ure 11.12. (Use p as the probability that Player 1 plays U and q as the
probability that Player 2 plays L.)

Player 2

L R

Player 1
U 0, 0 -1, 5

D -2, 1 1, -2

Figure 11.12: Another game with a mixed strategy equilibrium


